
E3SM All Hands: NGD Nonhydrostatic Atmosphere:
Performance-Portable Physics Parameterizations

Andrew M. Bradley, Jim Foucar, SCREAM Team

Andrew M. Bradley, Jim Foucar (SNL CCR) Performance portability March 2019 0 / 9



Outline

1 Machines

2 Methods

3 Mini-app

Andrew M. Bradley, Jim Foucar (SNL CCR) Performance portability March 2019 1 / 9



Outline

1 Machines

2 Methods

3 Mini-app

Andrew M. Bradley, Jim Foucar (SNL CCR) Performance portability March 2019 1 / 9



Summit

Summit
I 4608 IBM Power9 nodes
I 27,648 16GB Nvidia V100 GPUs
I 2560 double precision cores/GPU (80 SM × 32 cores/SM)
I 32 threads/core
Nonhydrostatic 3km atmosphere
I ne = 1024

F 6,291,456 horizontal elements
F 56,623,106 columns

I 128 levels
Implied minimum parallelism in each column
I ∼2048 columns/GPU
I Must use ≥ 40 threads/column
I In practice, 2–4 cores controlled by a thread block (Cuda) = team (Kokkos)
I Must parallelize in each column.

1/4-degree model (ne = 120, 72 levels) with 2 (3) cores/column can occupy ∼608 (∼973,
accounting for unused 2 cores/SM when team size is 3) GPUs.

Andrew M. Bradley, Jim Foucar (SNL CCR) Performance portability March 2019 2 / 9



Outline

1 Machines

2 Methods

3 Mini-app

Andrew M. Bradley, Jim Foucar (SNL CCR) Performance portability March 2019 2 / 9



Methods: Expose all Parallelism

C++/Kokkos

Hierarchical parallelism

Team per column

Parallel map (for), reduction, scan within team
Kokkos tutorial and documentation:
I github.com/kokkos/kokkos/tree/master/doc
I github.com/kokkos/kokkos-tutorials
I github.com/kokkos/kokkos/tree/master/example/tutorial
I github.com/kokkos/kokkos-tutorials/tree/master/Intro-Full/Slides

Andrew M. Bradley, Jim Foucar (SNL CCR) Performance portability March 2019 3 / 9

github.com/kokkos/kokkos/tree/master/doc
github.com/kokkos/kokkos-tutorials
github.com/kokkos/kokkos/tree/master/example/tutorial
github.com/kokkos/kokkos-tutorials/tree/master/Intro-Full/Slides


Methods: Vectorize

Vector processing units (VPU) are important on current CPU/KNL.

Adding VPUs to an architecture is an efficient means to increase FLOPS and optimize use of
available memory bandwidth.

Thus, I predict VPUs will never go away.

V100 already supports limited vector intrinsics.

Implementation:

Fortran auto-vectorizes well if code is written carefully.

C++ does not.
But C++ easily supports Pack and Mask types.
I Bonus: Vectorization is roughly independent of compiler.
SCREAM solution:
I Pack: Multiple scalars packed together, respecting memory alignment and vector width.
I Mask: Conditionals (e.g., if statements).

Andrew M. Bradley, Jim Foucar (SNL CCR) Performance portability March 2019 4 / 9



Methods: Manage Memory and Temporaries

Moving data is expensive . . .

. . . and becomes relatively more expensive with time.
Must handle
I Communication between devices
I Global data on a device
I Local data

F Per team
F Per thread

Temporaries implementation:

Need reusable workspace shared among threads in a team.

Minimize global memory footprint.
SCREAM solution: WorkspaceManager.
I Request and release column-friendly temporary arrays.
I User-friendly and aggressive performance API options.

F Start with user-friendly API.
F When everything works, optimize with aggressive performance API.

Andrew M. Bradley, Jim Foucar (SNL CCR) Performance portability March 2019 5 / 9



Methods: PVM

Conversion strategy:

Expose all Parallelism.

Develop Vectorization strategy.

Develop Memory, temporaries, MPI strategy.

Also:
Maintain bit-for-bit against reference Fortran with a set of compiler flags and code
configuration.
I Cuda: -fmad=false
I GCC: -ffp-contract=off
I Intel: -fp-model strict

Unit test everything.
I catch2

Andrew M. Bradley, Jim Foucar (SNL CCR) Performance portability March 2019 6 / 9



Outline

1 Machines

2 Methods

3 Mini-app

Andrew M. Bradley, Jim Foucar (SNL CCR) Performance portability March 2019 6 / 9



P3 mini-app overview

To work through PVM for SCREAM, we made a mini-app implementing P3 rain
sedimentation.

Many intermediate versions.

Final repo master has just a few.

Docs to explain pieces.

Andrew M. Bradley, Jim Foucar (SNL CCR) Performance portability March 2019 7 / 9



P3 mini-app performance

PVM:
I Expose all Parallelism
I Vectorize on Skylake and KNL
I Memory and temporaries
Performance and programmer
convenience. Roughly,
I Kokkos provides these for P.
I Packs provide these for V.
I Workspace provides these for M.
Initial (performant) Kokkos: P
I Also assure that V and M constructs

don’t decrease performance.

Final Kokkos: PVM
Comments:
I On KNL, mostly V gives Final

Kokkos a 2.9–3.4× speedup over the
Fortran reference.

I On SKX, mostly V gives a 1.4–1.5×
speedup over the Fortran reference.

I ne = 1024 on full Summit: ∼2048
columns/GPU.

Andrew M. Bradley, Jim Foucar (SNL CCR) Performance portability March 2019 8 / 9



Next steps

SHOC has two algorithmic pieces plus a lot of code that has the same patterns as P3.
These two algorithmic pieces will likely be of use to others:

Tridiagonal solve
I Diagonally dominant⇒ no pivoting (great).
I Two systems, one with 2 RHS, one with 3 + num_tracer. (But #RHS still much < than number of

threads in team: at most ∼43 vs 128.)
I GPU: Combinations of two cyclic reduction variants and Thomas algorithm (standard elimination):

thread across rows and RHS.
I Non-GPU: Thomas algorithm, ideally with tracers Packed along i (not k).
Linear interpolation
I Many applications with the same grids⇒

F Set up, probably O(n log n) and fully parallel.
F Application, probably O(n) and fully parallel.

Andrew M. Bradley, Jim Foucar (SNL CCR) Performance portability March 2019 9 / 9


	Machines
	Methods
	Mini-app

